SPL-TUGAS1-ALIN
Sistem Persamaan Linear (SPL)
Sistem persamaan linier merupakan sekumpulan pesamaan linier dengan sejumlah hingga peubah bebas yang saling terkait.
Sistem persamaan linear dapat didefinisikan sebagai sebuah persamaan aljabar, yang tiap sukunya mengandung konstanta, atau perkalian konstanta dengan variabel tunggal. Persamaan ini dikatakan linear sebab hubungan matematis ini dapat digambarkan sebagai garis lurus dalam Sistem Koordinat Kartesius.
Pengertian Sistem Persamaan LinearSistem persamaan linear dapat didefinisikan sebagai sebuah persamaan aljabar, yang tiap sukunya mengandung konstanta, atau perkalian konstanta dengan variabel tunggal. Persamaan ini dikatakan linear sebab hubungan matematis ini dapat digambarkan sebagai garis lurus dalam Sistem Koordinat Kartesius.
Secara umum sebuah persamaan linear dalam n variable x1, x2, …, xn dapat dinyatakan dalam bentuk : a1x1 + a 2x 2 + … + a n x n = b, dengan a 1, a 2, …, a n dan b adalah konstanta real.
Contoh :
Persamaan berikut merupakan persamaan linear :
a. x + 3y = 7
b. y = 5x + 3z + 1
Persamaan berikut bukan persamaan linear :
c. x2 + 3y = 5
d. y – sin x = 0
Himpunan berhingga dari persamaan linear- persamaan linear dalam n variable x1, x2, …, xn dinamakan sistem persamaan linear atau sistem linear. Bentuk umum sistem persamaan linear (disingkat SPL) yang terdiri dari m persamaan dan n variable x1, x2, …, xn dapat ditulis sebagai :
a11 x1 + a12 x2 + … + a1n xn = b1
a21 x1 + a22 x2 + … + a2n xn = b2
am1x1 + am2 x2 + … + amn xn = bm,
dengan aij dan bi (1 § i § m, 1 § j § n) adalah konstanta-konstanta real.
Suatu sistem persamaan linear dengan m persaman dan n variable x1, x2, …, xn dengan Am x n = (aij ), Xn x 1 = ( ) x j , dan Bm x 1 = ( ) bi . Jika matriks B pada SPL di atas diganti dengan matriks nol O, maka sistem persamaan linear tersebut dikatakan homogen, jika tidak disebut SPL non homogen.
Contoh :
a. SPL non homogen berikut
x1 – x2 + x3 = 2
2x1 – x2 – x3 = 4
b. SPL homogen berikut
x1 + x2 = 0
x1 – x2 = 0
Perbedaan PLDV dan SPLDV
Persamaan Linear Dua Variabel
Persamaan Linear Dua Variabel (PLDV) adalah sebuah bentuk relasi sama dengan pada bentuk aljabar yang memiliki dua variabel dan keduanya berpangkat satu. Dikatakan Persamaan Linear karena pada bentuk persamaan ini jika digambarkan dalam bentuk grafik, maka akan terbentuk sebuah grafik garis lurus (linear).
Ciri – ciri PLDV:
1. Menggunakan relasi sama dengan ( = )
2. Memiliki dua variabel berbeda
3. Kedua variabelnya berpangkat satu
Sistem Persamaan Linear Dua Variabel
Seperti pada penjelasan sebelumnya, Sistem Persamaan Linear Dua Variabel (SPLDV) adalah sebuah sistem / kesatuan dari beberapa Persamaan Linear Dua Variabel (PLDV) yang sejenis. Persamaan Linear Dua Variabel yang sejenis yang dimaksud disini adalah persamaan – persamaan dua variabel yang memuat variabel yang sama.
Contoh :
Persamaan (i) ; 2x + 3y = 12
Persamaan (ii) ; x – 2y = -1
Kedua persamaan diatas dikatakan sejenis karena memuat variabel variabel yang sama yakni x dan y.
Jika pada PLDV, dapat dikatakan bahwa PLDV memiliki penyelesaian lebih dari satu asalkan penyelesaian tersebut memenuhi nilai pada PLDV.
Persamaan Linear Dua Variabel
Persamaan Linear Dua Variabel (PLDV) adalah sebuah bentuk relasi sama dengan pada bentuk aljabar yang memiliki dua variabel dan keduanya berpangkat satu. Dikatakan Persamaan Linear karena pada bentuk persamaan ini jika digambarkan dalam bentuk grafik, maka akan terbentuk sebuah grafik garis lurus (linear).
Ciri – ciri PLDV:
1. Menggunakan relasi sama dengan ( = )
2. Memiliki dua variabel berbeda
3. Kedua variabelnya berpangkat satu
Sistem Persamaan Linear Dua Variabel
Seperti pada penjelasan sebelumnya, Sistem Persamaan Linear Dua Variabel (SPLDV) adalah sebuah sistem / kesatuan dari beberapa Persamaan Linear Dua Variabel (PLDV) yang sejenis. Persamaan Linear Dua Variabel yang sejenis yang dimaksud disini adalah persamaan – persamaan dua variabel yang memuat variabel yang sama.
Contoh :
Persamaan (i) ; 2x + 3y = 12
Persamaan (ii) ; x – 2y = -1
Kedua persamaan diatas dikatakan sejenis karena memuat variabel variabel yang sama yakni x dan y.
Jika pada PLDV, dapat dikatakan bahwa PLDV memiliki penyelesaian lebih dari satu asalkan penyelesaian tersebut memenuhi nilai pada PLDV.
Komentar
Posting Komentar